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The problem of the exister~ce, branching and stability of the steady motions of a system of two elastically coupled bodies in a 
central gravitational field is considered. Each body is simulated by a weightless rod with point masses at opposite encY. It is assumed 
that the rods are elastically attached at their mass centres, and the composite body is moving in a plane containing the attracting 
centre. Both trivial and non-trivial steady motions are studied, on the assumption that none of the principal axes of inertia of 
the body coincides with the radius vector of the centre of mass or with a tangent to the orbit; it is also assumed that the rods are 
not orthogonal to one another. The stability of all steady motions is fully investigated and an atlas of bifurcation diagrams presented. 
© 1998 Elsevier Science Ltd. All fights reserved. 

Previous studies have considered the steady motions of  two rigidly coupled rods [1] and of two point 
masses on a spring [2]1. 

1. We consider the linear and rotational motion of a system of two elastically coupled bodies in a 
central gravitational field. Each body is simulated by a weightless rod ds of length 2a, at opposite ends 
of  which are point masses ms/2 (s = 1, 2). I t  is assumed that the rods are elastically linked together  at 
their centres of  mass, ~md that the composite body is moving in a plane containing the attracting centre. 

The position of the ,composite body is uniquely defined by four generalized coordinates: the distance 
r f rom the centre of  mass G of  the body to the attracting centre O, the angles (Pl and 92 between the 
straight line O G  and the rods dl and d2, respectively, and the angle ~0 between a certain fixed direction 
in the plane of motion and the straight line O G .  

The kinetic and potential  energies (T and V, respectively) are given by 

2 T = m(  i "2 + r2 (# 2 ) + mla  2 ( ip + ip] )2 + m2a 2 (~ _ ~0 2 )2 

2 
2 V = - f M  ~, m i (Fi+ + F i_ ) + V¢, Fi+ = (r  2 + a 2 -1- 2ary i  ) - ~ ,  Yi = cos ~0 i 

i=l 

where M is the mass of  the attracting body, m = ml  + m2 is the mass of  the body, f is the gravitational 
constant, and Vc is the potential  energy of  deformation. We will assume that Ve = k((Pl + 92 - rd2) 2, 
where k is the stiffness of  the elastic coupling between the rods. 

The Lagrangian L = T - V is independent of  the angle 9. Consequently, the equations of  motion, 
in addition to the energy integral T + V -- h, admit of  the integral 

0T / 0(0 = x = const (1.1) 

and the body may execute motions of  the form 

o o 
r r ° const, qh = (Pl = const, 92 = ~02 = const, ~ = ¢0 °= const (1.2) 

In such motion, the centre of  mass of the body moves at a uniform velocity in circles about  the attracting 
centre; the body maintains a fixed orientation relative to the centre and the angle between the rods is 
constant. 

I .gnoring the cyclic variable tp, introducing the Routh function R = R0:, ~ ,  tp2, r, tPl, 92, x)  = T - V 
- ~cp with the variable (0 eliminated with the help of  the area integral, and assuming, without loss of  
generality, that  the units are chosen so t ha t fM  = 1, a = 1, ml  >I m2, we can write the effective potential  
as 
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x 2 
W* = - R  o = re, V -  2(l+Ix)(r2 +1) '  Ix = m2 / m I • (0;1] 

The constants r °, tp], q~ in (1.2) correspond to critical points of the effective potential, i.e. to critic~ points 
of the function W = W*/ml, while the constant co* in (1.2) is determined from (1.1): co* = ×l[m(# + 1)]. 

2. Let us determine the critical points of the function W. To that end we consider the following system 
of equations 

WIn, = rsin~P{2 Ixi-'[Fi3-F/3I+/~(q~' +q'~2 - 2 3  = 0 

1 x 2r 
Wr = ~ (G! + IxG2 ) - (1 + Ix)(r 2 + 1) 2 = 0 

w~=aWlatp~, Wr=aWlar 

Gi=(r+Yi)Fii3++(r-Yi)Fi3_, i=1,2,  f c = k l m  1 

(2.1) 

(2.2) 

Equations (2.1) are satisfied, identically with respect to r, by the values 

1) tp, = 0, (P2 = ~ / 2 (mod n) 

2) 92 =0,  9, = re /2  (modn) 

Equation (2.2) then becomes 

2 = H i ( r  ) _ (1 + Ix ) (p i ( r  2 + 1) ~ + qi i x 

(Pl = q 2  =Ix, P2 = q l  = l )  

(r2 +I)2 [ ( r+~_ ~ sign(r- l)l~ 
2r ~ J)' i=1,2  

Analysing the functions Hi(r) as was done in [1], we conclude that Eq. (2.2) has no solutions when 
× ~  < ~ < x~, two families of solutions r = r~(× 2) when ×2 > ×~2 for all values of Ix, and if IX • (0, 0.06) 

+ 2 2 o2 2 there are two further families of solutions r = r~2(× ) when//2(0) < × < x22; moreover, r~x  ) > r~ > 
r~s(~ 2) (i, s = 1, 2). Here 

• , + 2 H~>0  (Hs<0)  for r=ris(X ) (r=r/s(X2)), 

[H2(r2°2>, Ix • (0;0,~> 
o o o =~ H2(O), ~ t e [ 0 , 0 6 ; 0 , 5 )  

X{s =ns(rls), ~22 [ O, ~te[0,5;1] 

• O 
H ~ ( r ~ ) =  0 

In all the remaining cases Eq. (2.2) has a unique solution. 
Note that ×~2 < ×~2 (s = 1, 2), and also ~1 > r~2 > :22, H1 > HE for Ix e (0, 1); r~l = ~2, H1 =/-/2 

for IX = 1. 
Obviously, solutions of the form 

q~l=0, t p 2 = g / 2  , r=r l~(x  2) (2.3) 

tp2=0, tp l= / t /2 ,  r=rl:~(x2), r = r ~ ( x  2) (2.4) 

correspond to orientations of the body such that one of its principal central axes of inertia is aligned 
along the radius vector of the centre of mass and the other along a tangent to the orbit; the rods are 
then orthogonal to one another. 

3. We will now determine the nature of the critical points (2.3) of the effective potential. To that end 
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we evaluate the matrix coefficients of the second variation of the function W along the solution (2.3) 

o r H{(r), C[~)=W~.--O, C~)=W~2=-O (3.1)  
(7(1]) = W,r ==" m(r  2 + 1)2 

F'(l) -- W°  r(3r2 + 1) r f l )  o r,(l) o /~_ 3IX r2 
"23 "33 ( r  2 + 1)5/2 

- _=  = = = _ 

T h e  conditions for the steady motions (2.3) to be stable are the inequalities 

C~ll ) > O, (',(l) G ( l )  _ (.,(l)(-,(l) /t",(l)-~2 "22  > 0,  - -  '~22 "'33 - -  ' , " 2 3  I > 0 (3.2) 
- 2 The sign of C(1~1) is the same as that of  dill~dr, that is, CO)< > 0 fo r r  -- rlz(× ), and C(~ > 0. 

Analysis of the behaviour of G O) as a function of the parameters/~, IX shows that ff k/ix < 3~/(2)/8, 
then G 0) = 0 for r = I'Zl, and G O) < 0 (G (1) > 0) for 1 < r < rlz (r > r l l ) ;  otherwise, G 0) > 0 for any 
r ~ (1, ~). 

We can similarly investigate the nature of the critical points (2.4) of the effective potential. The 
conditions for the ste~tdy motions (2.4) to be stable are given by inequalities similar to (3.2) but with 
the superscript 1 replaced by 2; in (3.1), this replacement must be accompanied by cyclic permutation 
of the indices (01 ~ ~ and replacement o f  (r 2 - 1) 3 by I rE -- 1 13. 

The sign of C]2)is the same as that of a jar, that is C~ 2) ,~ 0 for r = r~2(×2), C~  ) > 0. 
Analysis of the behaviour of G (2) as a function of the parameters/~ and IX shows that for certain values 

of the parameters G (2) = 0 for r = rz2 and r = r22, and moreover G (2) < 0 (G (2) > 0) for 0 < r < r22, 
r > r12 (r22 < r < 1; 1 < r < rz2); otherwise, G (2) > 0 for all r e (0, oo). 

Our conclusions are thus as follows: 
1. If k < 3~/(2)/8, then, depending on the values of Ix, we have: (a) two bifurcation points at r > 1, 

(b) onedouble  bifurcation point (the two points coincide), (c) no bifurcations. 
2. I fk  /> 3~/(2)/8, then, depending on the values of IX, we have: (a) one bifurcation point at r > 1 and 

one at 0 < r < 1; (b) one bifurcation point at r > 1. 

4. At the points (01 := 0 ,  (02 ---- r:/2, r = rzl, ×~,2 = Hl(rZl  ) ((01 = u/2, (02 ---- 0, r = rz2 , r = r22, ×j'22 = 
x22 = H2(r22)) one of the matrix coefficients of the second variation vanishes and the degree /12(r19, ,2 

of instability of the solutions (2.3) ((2.4)) vanishes. This means that at these points a solution of system 
(2.1), (2.2) branches.off one of these solutions; in this solution the orientation of the body is such that neither 
of its central axes of inertia coincides with the radius vector of the centre of mass or the tangent to the 
orbit, and the rods are not mutually orthogonal. We will seek solutions branching off (2.3) in the form 

1) (01 = Ix, (02 = ~ / 2  - 13 ( 4 . 1 )  

and solutions branching off (2.4) in the form 

2) (02 = Ix, (01 = ~t/2 - [I (4.2) 

For these solutions, system (2.1) is equivalent to the following system of equations 

~t = F/(r, ix,/~), Ix = Ri(r,~fC,l.t),  i = 1,2 (4.3) 

where 

F/(r, Ix,/~) -- Qi(ix) ~(r, P/(IX)) 
P/(f/( ix)) ~(r, Qi ( f / ( ix) ) ) '  f i ( i x ) = ~ = i x + 8 i  ~(r,P/(ix)) 

Q ; ( g , ( P ) )  ;(r,P~(g~(13))) 
g~(13) = a = 13 + ~; ~ ;(r, 0~(13)) R, (r, ~.,/~, IX) 

Pi(~J) ~( r ,  Q i (~ ) )  ' 

~ ( r , x )  = 0 ,2 + 1 - 2 rx )  - ~  - ( r  2 + I +2 rx )  - ~  
QI(a) = P2(a)=sina, Q2(a)= P = ( a ) = c o s a ,  5 i = ( - 1 )  TM 
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Fig. 1. Fig, 2. 

When that is the case 

x 2 = (1 +]~)( r2 +1)  2 (Gi + gG'-2), 
2r 

G'-~ = ( r + P/(tg)) F//3 (a)  + ( r  - Q/. ((It)) F/3 ( - a )  

Analysis of system (4.3) shows that, depending on the parameters of the problem, one obtains 
bifurcation diagrams of different possible types: six types for solutions branching off (2.3) and 16 for 
solutions branching off (2.4). 

Figures 1 and 2 demonstrate the domains in the (/~, g) plane corresponding to the different types of 
bifurcation diagram. Domains labelled (0) in either figure are those in which there is no bifurcation 
and those labelled (2) and (3) in Fig. 2 indicate domains with the same type of diagram as in the case 
of a rigid body [1]. In all other cases the diagrams are essentially distinct from those of a rigid body [1]. 
In particular, if the parameters of ihe problem lie in domains (2) and (3) (Fig. 1), the bifurcation diagrams 
are of the form shown in Figs 3 and 4; but if the parameters lie in domains (6), (12) or (14) (Fig. 2), 
the bifurcation diagrams are of the form shown in Figs 5g 6 or 7, respectively. 

All the bifurcation diagrams are sections of (r, 91, 92, r ' )  space by hyperplanes (2.3) (Fig. 1) or (2.4) 
(Fig. 2). The solid curves represent branches lying in these hyperplanes and corresponding to trivial 
steady motions. The dashed curves indicate projections of branches that lie outside the hyperplanes, 
corresponding to non-trivial steady motions. Indices 0, 1 and 2 denote the degree of instability of the 
steady motions of the body corresponding to various orientations. The degree of instability of the non- 
trivial orientations is indicated in accordance with the general concepts of bifurcation theory. 
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/ 
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Fig. 3. Fig. 4. 



The steady motions of a system of two elastically coupled bodies 71 
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Fig. 5. Fig. 6. 

Diagram / 

0 ! 2 ,4' t 

Fig. 7. 

Note that if/~ >> 1, there are no bifurcations for solutions (2.3) (Fig. 1), while only two distinct types 
of bifurcation diagram are possible for (2.4) (this result is analogous to the previous results of [1]). At 
the same time, as k is decreased, there are some values of g at which (unlike the previous results in 
[1]) there may be non-trivial steady motions branching off from solutions (2.4) that are stable in the 
secular sense. 
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